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Abstract

Recently, the continuous review inventory models with allowable shortages have been extended to include variable
lead time, where a fixed fraction of the demand during the stockout period is backordered. However, in practice, the
backorder (or lost sales) rate may change slightly due to some uncertainties. To incorporate this reality, this article
attempts to apply the fuzzy set concepts to deal with the uncertain lost sales rate. For a situation where information

about the lead time demand distribution is partial, we utilize the minimax distribution free procedure to find the optimal
inventory strategy in the fuzzy sense. Two numerical examples are given to illustrate the results.# 2002 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Traditionally, economic order quantity (EOQ) models dealing with continuous review inventory
problems often assume that the demand during the stockout period is either completely backordered or
completely lost; and the lead time is viewed as a prescribed constant or a random variable, which therefore
is not subject to control [1,2]. However, these are not always true; for example, in real markets, it can be
observed that, when the inventory system is out of stock, some of the customers may be willing to wait for
their demand, while others may fill their demand from another source. And hence, many researchers
extended the continuous review inventory models to include the partial backorder situation (see, e.g., [3–8]).

On the other hand, lead time usually consists of the following components [9]: order preparation, order
transit, supplier lead time, delivery time and setup time. In many practical situations, lead time can be
reduced at an added crashing cost; in other words, it is controllable. Moreover, the Japanese successful
experiences of using Just-In-Time (JIT) production has evidenced that there are substantial advantages and
benefits that can be obtained through various efforts of reducing lead time. Recently, lead time reduction
has received a lot of interest by several researchers (see, e.g., [5–8,10,11]). Specifically, under various
settings, Ouyang et al. [5], Ouyang and Wu [6], Moon and Choi [7] and Hariga and Ben-Daya [8]
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investigated the lead time reduction on continuous review inventory models, in which the partial backorder
situation is also incorporated.

The underlying assumption in the above partial backorder models, no matter whether lead time
reduction is involved [5–8] or not [3,4], is that the fraction of excess demand backordered (or lost) is a fixed
constant. However, we can see from real markets that many products such as clothes, shoes and vegetables,
whose backorder rate (or equivalently, lost sales rate) may be influenced by substitute, brand loyalty,
customers’ preference and waiting patience, etc. In other words, the lost sales rate may change slightly due
to these potential factors, and it is difficult to measure an exact value for lost sales rate. Therefore, in this
article, we attempt to apply the fuzzy set concepts to deal with the ambiguous lost sales rate. We believe
that if we express the fuzzy lost sales rate as the neighborhood of the fixed lost sales rate, then it may match
the real situation better. In fact, the application of fuzzy set concepts on EOQ inventory models have been
proposed by many authors (e.g., [12–16]). However, their studies are almost concentrated on the simple
EOQ models in which restrictive assumptions, such as demand is known with certainty and lead time is
constant, are included so that they have few applications in real inventory systems.

The purpose of this paper is to modify Moon and Choi’s [7] stochastic continuous review inventory
model with variable lead time and partial backorders to capture the reality of uncertain backorders (lost
sales). Specifically, in this paper we introduce two fuzzinesses of lost sales rate. We first fuzzify the lost sales
rate to a triangular fuzzy number. Then, we utilize statistical methods to obtain the confidence interval for
lost sales rate, and employ it to get the statistic-fuzzy number. For each case, under the assumption that
only partial information about the lead time demand distribution is given, we apply the minimax
distribution-free approach to solve the problem and develop an algorithm to find the optimal solution.
Note that the minimax distribution-free approach was originally proposed by Scarf [17] to solve the
newsboy problem in a situation where only the mean and standard deviation of the stochastic demand are
known. Recently, Gallego and Moon [18] presented a new and very compact proof of the optimality of
Scarf’s ordering rule for the newsboy problem and extended the analysis to several cases. The applications
of this approach to other production/inventory models, see for examples, [6–8,19–21].

2. Membership function of the fuzzy total cost

Under the assumptions that:

(i) the lead time L has n mutually independent components each having a different crashing cost for
reducing lead time;

(ii) a fraction b (04b41) of the demand during the stockout period can be backordered, and the
remaining fraction 1� b is lost.

Moon and Choi [7] extended Ouyang et al.’s [5] model by simultaneously optimizing the order quantity,
reorder point and lead time. Specifically, the expected annual total cost which is composed of ordering cost,
inventory holding cost, stockout cost and lead time crashing cost is expressed by
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where D is the average demand per year, A the fixed ordering cost per order, h the inventory holding cost
per unit per year, p the fixed penalty cost per unit short, p0 the marginal profit per unit, Q the order
quantity, L the length of lead time, X the lead time demand which has a distribution function (d.f.) F with
finite mean DL and standard deviation s

ffiffiffiffi
L

p
, where s denotes the standard deviation of the demand per

unit time, r the reorder point; r ¼ DLþ ks
ffiffiffiffi
L

p
, where k is the safety factor, BðrÞ the expected demand

shortage at the end of cycle; BðrÞ ¼
R1
r ðx� rÞ dFðxÞ; ui; vi; ci are the ith component of lead time L has a

minimum duration ui and normal duration vi, and a crashing cost per unit time ci, where c14c24 
 
 
4
cn; Li the length of lead time with components 1, 2, . . . , i crashed to their minimum duration;
Li ¼

Pn
j¼1 vj

Pi
j¼1 ðvj � ujÞ, i ¼ 1, 2, . . . , n. Further, let L0 ¼

Pn
j¼1 vj and RðLÞ be the lead time crashing

cost per cycle; RðLÞ ¼ ciðLi�1 � LÞ þ
Pi�1

j¼1 cjðvj � ujÞ; L 2 ½Li; Li�1� and RðL0Þ ¼ 0.
It is noted that the backorder rate, b, in model (1) is viewed as a fixed constant. However, as mentioned

previously, in many practical situations, the backorder rate may change slightly due to various
uncertainties. In order to match the realistic situation better, we therefore attempt to modify model (1)
by fuzzifying the backorder rate (or equivalently, by fuzzifying the lost sales rate) to a fuzzy number.

In what follows, for convenience, we let a � 1� b denote the lost sales rate. Therefore, for any Q > 0,
r > 0 and L > 0, we may express the expected annual total cost function (1) as

GðQ;r;LÞðaÞ � EACðQ; r; LÞ ¼ Aþ RðLÞ þ pBðrÞ½ �
D

Q
þ h
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þ a hþ p0
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Q


 �
BðrÞ: ð2Þ

We now replace the lost sales rate, a, by the fuzzy number *aa, and consider the fuzzy number *aa as the
triangular fuzzy number, *aa ¼ ða� D1; a; aþ D2Þ, where 05D15a and 05D241� a, with the following
membership function:

m *aaðxÞ ¼

x� aþ D1

D1
if a� D14x4a;

aþ D2 � x

D2
if a4x4aþ D2;

0 otherwise:

8>>>>><
>>>>>:

ð3Þ

The picture is shown in Fig. 1.
For any Q > 0, r > 0 and L > 0, we let GðQ;r;LÞðxÞ ¼ yð> 0Þ. By extension principle [22,23], the membership

function of the fuzzy cost GðQ;r;LÞð *aaÞ is given by

mGðQ;r;LÞð *aaÞðyÞ ¼
supx2G�1

ðQ;r;LÞðyÞ
m *aaðxÞ if G�1

ðQ;r;LÞðyÞ ¼= /0;

0 if G�1
ðQ;r;LÞðyÞ ¼ /0:

(
ð4Þ

Fig. 1. Triangular fuzzy number *aa.
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From GðQ;r;LÞðxÞ ¼ y and Eq. (2), we get

Aþ RðLÞ þ pBðrÞ½ �
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where W ¼ Aþ RðLÞ þ pBðrÞ.
Therefore, from (3) and (6), the membership function of GðQ;r;LÞð *aaÞ can be written as
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The picture of the membership function of GðQ;r;LÞð *aaÞ is shown in Fig. 2.
We now derive the centroid (for more details, see e.g. [24, p.336]) of mGðQ;r;LÞð *aaÞðyÞ as follows:
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which is an estimate of the expected annual total cost in the fuzzy sense.

Fig. 2. Triangular fuzzy number of GðQ;r;LÞð *aaÞ.
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Remark 1. In the traditional inventory models with a mixture of backorders and lost sales, the backorder
(or lost sales) rate is viewed as a given constant. However, in practical situations, the backorder (or lost
sales) rate may change slightly for some uncertainties. Hence, it is unrealistic to regard the crisp value
EACðQ; r; LÞ as a true expected annual total cost. In order to match the realistic situation, we replace here
the fixed lost sales rate, a, by the triangular fuzzy number, *aa ¼ ða� D1; a; aþ D2Þ, where 05D15a and
05D241� a, and use the value MðQ; r; LÞ as the estimate of the expected annual total cost. Note that the
absolute difference value between MðQ; r; LÞ and EACðQ; r; LÞ is equal to D2 � D1j j=3 hþ p0D=Q

� �
BðrÞ.

This result can be viewed in Eq. (8).

Remark 2. If D1 ¼ D2, then Fig. 1 is an isosceles triangle and Eq. (8) reduces to MðQ; r; LÞ=
EACðQ; r; LÞ, which implies that the fuzzy case becomes the crisp case; i.e., the fixed lost sales inventory
model is a special case of our new fuzzy lost sales inventory model. If D15D2, then the triangle in Fig. 1 is
skewed to the right, and in this case MðQ; r; LÞ > EACðQ; r; LÞ. If D1 > D2, then the triangle in Fig. 1 is
skewed to the left, and in this case MðQ; r; LÞ5EACðQ; r; LÞ.

3. Optimal solution

In this section, we investigate the optimal inventory strategy in the fuzzy sense for a situation where only
the mean and standard deviation of lead time demand are known, but the distributional form of lead time
demand is unknown. In this case, the exact value of the expected demand shortage at the end of the cycle
BðrÞ cannot be found, and hence, the optimal value of ðQ; r; LÞ which minimize the fuzzy expected annual
total cost MðQ; r; LÞ cannot be obtained.

Now, we attempt to utilize the minimax distribution-free procedure to solve this problem. For
convenience, we let F denote the class of d.f. F of X which has finite mean DL and standard deviation s

ffiffiffiffi
L

p
.

Then the minimax distribution-free approach for this problem is to find the least favorable d.f. F in F for
each ðQ; r; LÞ, and then to minimize the fuzzy expected annual total cost over Q, r and L. In mathematical
symbolization, our problem is to solve

Min
Q>0; r>0;L>0

Max
F2F

MðQ; r; LÞ: ð9Þ

To this end, we need the following proposition, whose proof can easily be obtained by using r ¼
DLþ ks

ffiffiffiffi
L

p
and Lemma 1 in Gallego and Moon [18].

Proposition 1. For any F2F,
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p
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Moreover, the upper bound (10) is tight.
Next, using (10), (8) and (1), and allowing the safety factor k as a decision variable instead of the reorder

point r (because r ¼ DLþ ks
ffiffiffiffi
L

p
), problem (9) is reduced to minimize
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where Muð
Þ and EACuð
Þ denote the least upper bound of the fuzzy expected annual total cost Mð
Þ and the
crisp expected annual total cost EACð
Þ, respectively.

For fixed Q and k, we can show that MuðQ; k; LÞ is concave in L 2 ½Li; Li�1�; hence, when Q and k are
given, the minimum expected annual total cost in the fuzzy sense will occur at the end points of the interval
½Li; Li�1�. On the other hand, for fixed L 2 ½Li; Li�1�, it can be shown that MuðQ; k; LÞ is convex in ðQ; kÞ.
Therefore, for a given L 2 ½Li; Li�1�, the minimum value of MuðQ; k; LÞ will occur at the point, say
ðQ * ; k* Þ, which satisfies the first-order conditions @MuðQ; k; LÞ=@Q ¼ 0 and @MuðQ; k; LÞ=@k ¼ 0,
simultaneously; i.e., the point ðQ * ; k* Þ satisfies the following equations:

Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D

h
Aþ RðLÞ þ

1

2
s
ffiffiffiffi
L

p
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
� kÞ pþ p0 aþ

D2 � D1

3


 �� �� �s
ð12Þ

and

kffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p ¼ 1�
2hQ

pDþ ðhQþ p0DÞ aþ
D2 � D1

3


 �: ð13Þ

From Eqs. (12) and (13), we note that it is difficult to find the closed-form solutions of ðQ* ; k* Þ.
Therefore, we develop the following algorithm to find the optimal solutions for the order quantity, safety
factor and lead time.

Algorithm 1.

Step 1. For given, Li; i ¼ 0; 1; 2; . . . ; n, perform (i)–(iv).

(i) Start with ki1 ¼ 0.
(ii) Substituting ki1 into (12) evaluates Qi1.
(iii) Utilizing Qi1 determines ki2 from (13).
(iv) Repeat (ii) to (iii) until no change occurs in the values of Qi and ki. Denote the solution by ðQ*

i ; k
*
i Þ.

Step 2. For each ðQ *
i ; k

*
i ; LiÞ; i ¼ 0; 1; 2; . . . ; n, calculate the corresponding fuzzy expected annual total

cost MuðQ *
i ; k

*
i ; LiÞ by utilizing (11).

Step 3. Find mini¼0;1;2;...;n M
uðQ*

i ; k
*
i ; LiÞ.

If MuðQ *aa; k *aa; L *aaÞ ¼ mini¼0;1;2;...;n M
uðQ *

i ; k
*
i ; LiÞ, then ðQ *aa; k *aa; L *aaÞ is the optimal solution in the fuzzy

sense.

Note that once k *aa and L *aa are obtained, the optimal reorder point r *aa ¼ DL *aa þ k *aas
ffiffiffiffiffiffi
L *aa

p
follows.

Example 1. In order to illustrate the above solution procedure, let us consider an inventory system with the
data used in Moon and Choi ([7], which is the same as in Ouyang et al. [5]): D ¼ 600 units per year,
A ¼$200 per order, h ¼$20 per unit per year, p ¼$50 per unit short, p0 ¼$150 per unit lost, s ¼ 7 units per
week, and the lead time has three components with the data shown in Table 1.

Here, we consider three cases: ðD1; D2Þ ¼ ð0:2; 0:2Þ; ðD1; D2Þ=ð0:1; 0:4Þ, and ðD1; D2Þ ¼ ð0:4; 0:1Þ.
We solve each case for lost sales rate a ¼ 0:5. The results of the solution procedure are summarized in
Table 2.

From Table 2, when D1 ¼ D2 ¼ 0:2 (in this situation, the fuzzy case becomes the crisp case), by
comparing MuðQ *

i ; r
*
i ; LiÞ; i ¼ 0; 1; 2; 3, we obtain the optimal solution ðQ *aa; r *aa; L *aaÞ ¼ ð158; 63; 3Þ and the

minimum expected annual total cost in the fuzzy sense MuðQ *aa; r *aa; L *aaÞ¼ $3726:30, which are the same as
shown in Moon and Choi [7]. Moreover, when D1 ¼ 0:1 and D2 ¼ 0:4, i.e., the fuzzy number
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*aa ¼ ð0:4; 0:5; 0:9Þ, we have ðQ *aa; r *aa; L *aaÞ ¼ ð160; 64; 3Þ and MuðQ *aa; r *aa; L *aaÞ¼ $3798:11. Here we note that
EACuðQu; ru; LuÞ¼ $3726:30 is the corresponding minimum expected annual total cost in the crisp case.
Therefore, the absolute relative variation for the expected annual total cost between fuzzy case and crisp
case can be measured and given by

dM ¼
MuðQ *aa; r *aa;L *aaÞ � EACuðQu; ru;LuÞj j

EACuðQu; ru;LuÞ
100% ¼

3798:11� 3726:30j j
3726:30

100% ¼ 1:93%:

Similarly, for the case D1 ¼ 0:4 and D2 ¼ 0:1, i.e., the fuzzy number *aa ¼ ð0:1; 0:5; 0:6Þ, we have ðQ *aa; r *aa;
L *aaÞ ¼ ð156; 61; 3Þ and MuðQ *aa; r *aa; L *aaÞ¼ $3649:34, and the absolute relative variation for the expected
annual total cost between fuzzy case and crisp case dM ¼ 3649:34� 3726:30j j=3726:30100% ¼ 2:06%:

Moreover, we examine the performance of the distribution-free approach against the normal distribution
in the fuzzy sense. Consider a situation where D1 ¼ 0:1 and D2 ¼ 0:4. Using procedures similar to
Algorithm 1, the optimal solution for normal distribution case is ðQN ; rN ; LNÞ ¼ ð121; 73; 4Þ, and
the corresponding total cost MNðQN ; rN ; LNÞ¼ $2954:09. If one uses ðQ *aa; r *aa; L *aaÞ ¼ ð160; 64; 3Þ
(obtained by distribution free procedure) instead of using ðQN ; rN ; LNÞ ¼ ð121; 73; 4Þ for a normal
distribution, then the added cost is MNð160; 64; 3Þ �MNð121; 73; 4Þ=$3174:15� 2954:09 ¼ $220:06.
This is the largest amount that we would be willing to pay for the knowledge of d.f. F, and such
a quantity can be regarded as the expected value of additional information (EVAI) (see, e.g. [18,19]).
We note that the concept of EVAI is analogous to EVPI (expected value of perfect information)

Table 1

Lead time data

Lead time component Normal duration Minimum duration Unit crashing cost

i vi (days) ui (days) ci ($/day)

1 20 6 0.4

2 20 6 1.2

3 16 9 5.0

Table 2

Solution procedure of Algorithm 1 (Liin weeks)

D1 D2 i Li RðLiÞ Q*
i r*i (k*

i ) MuðQ*
i ; r

*
i ; LiÞ

0.2 0.2 0 8 0.0 167 137 (2.2373) $4243.97

1 6 5.6 161 108 (2.2856) 4013.37

2 4 22.4 155 79 (2.3279) 3773.82

3 3 57.4 158 63 (2.3089) 3726.30

0.1 0.4 0 8 0.0 170 139 (2.3645) 4358.10

1 6 5.6 163 111 (2.4171) 4113.99

2 4 22.4 158 81 (2.4647) 3857.27

3 3 57.4 160 64 (2.4479) 3798.11

0.4 0.1 0 8 0.0 164 134 (2.0988) 4121.28

1 6 5.6 158 106 (2.1428) 3905.31

2 4 22.4 153 77 (2.1797) 3684.32

3 3 57.4 156 61 (2.1584) 3649.34
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discussed in the decision theory. Here when it is certain that the information is perfect (i.e., this specific
form of d.f. F of lead time demand is going to occur in future), then the EVAI can be viewed as EVPI (for
more details about EVPI, see e.g. [25]).

4. Using the sample data to fuzzify the lost sales rate

We now turn our attention to another possible situation where the actual lost sales rate, a, is
unknown. When the actual lost sales rate a is unknown, we cannot utilize Eqs. (12) and (13) to
determine the optimal inventory strategy. In order to estimate the value for the actual lost sales rate a, an
intuitive method is to collect the random sample data of lost sales rate during past time and compute the
mean of the sample measurements. Although the sample mean is a good point estimator of a, the error of
estimation cannot be found. Consequently, here we attempt to utilize the technique known as confidence
interval estimation to construct a confidence interval for the actual lost sales rate a. Then we employ the
obtained confidence interval to find an estimate value for a in the fuzzy sense. The procedures are as
follows.

Suppose that we have collected m random sample data of lost sales rate during past time, say
a1; a2; . . . ; am. Then the sample mean is %aa ¼ ð1=mÞ

Pm
i¼1 ai and the sample variance is

s2 ¼ ½1=ðm� 1Þ�
Pm

i¼1 ðai � %aaÞ2. It can be shown that %aa is a good point estimator of the lost sales rate a.
Furthermore, suppose these sample data satisfy certain statistical assumptions. Then using the statistical
method, we get a ð1� aÞ100% confidence interval for a as follows:

%aa� tm�1ða1Þ
sffiffiffiffi
m

p ; %aaþ tm�1ða2Þ
sffiffiffiffi
m

p
" #

; ð14Þ

where, a1; a2 > 0; a1 þ a2 ¼ a, and tm�1ðaiÞ; i ¼ 1; 2, is the tabulated upper ai point of the t-distribution with
m�1 degrees of freedom; that is, if T be a random variable distributed as t-distribution with m�1 degrees of
freedom, then tm�1ðaiÞ is the value that satisfies the following condition:

P T > tm�1ðaiÞ½ � ¼ ai; i ¼ 1; 2: ð15Þ

Once we obtain a ð1� aÞ100% confidence interval of lost sales rate a, we can employ it to express the
statistic-fuzzy lost sales rate *aa* as the following level 1� a triangular fuzzy number:

*aa* ¼ %aa� tm�1ða1Þ
sffiffiffiffi
m

p ; %aa; %aaþ tm�1ða2Þ
sffiffiffiffi
m

p ; 1� a

" #
; where a1 þ a2 ¼ a: ð16Þ

And the membership function of statistic-fuzzy lost sales rate *aa* is given by

m *aa * ðxÞ ¼

ð1� aÞ x� %aaþ tm�1ða1Þ
sffiffiffiffi
m

p
" #

tm�1ða1Þ
sffiffiffiffi
m

p if %aa� tm�1ða1Þ
sffiffiffiffi
m

p 4x4 %aa;

ð1� aÞ %aaþ tm�1ða2Þ
sffiffiffiffi
m

p � x

" #

tm�1ða2Þ
sffiffiffiffi
m

p if %aa4x4 %aaþ tm�1ða2Þ
sffiffiffiffi
m

p ;

0 otherwise:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð17Þ

The picture is shown in Fig. 3.
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We now let GðQ;r;LÞðxÞ ¼ z, where GðQ;r;LÞð
Þ be defined as in (2). By extension principle [22,23], the
membership function of the fuzzy cost GðQ;r;LÞð *aa* Þ is

mGðQ;r;LÞð *aa * ÞðzÞ ¼
supx2G�1

ðQ;r;LÞðzÞ
m *aa * ðxÞ if G�1

ðQ;r;LÞðzÞ ¼= /0;

0 if G�1
ðQ;r;LÞðzÞ ¼ /0:

(
ð18Þ

From GðQ;r;LÞðxÞ ¼ z and Eqs. (2), (17) and (18), we obtain the membership function of GðQ;r;LÞð *aa* Þ as
follows:

mGðQ;r;LÞð *aa * ÞðzÞ ¼

ð1� aÞ zQ� WDþ hQ Q=2þ r�DL
� �� �� �

ðhQþ p0DÞBðrÞtm�1ða1Þs=
ffiffiffiffi
m

p �
ð1� aÞ %aa� tm�1ða1Þs=

ffiffiffiffi
m

p� �
tm�1ða1Þs=

ffiffiffiffi
m

p if z14z4z2;

ð1� aÞ %aaþ tm�1ða2Þs=
ffiffiffiffi
m

p� �
tm�1ða2Þs=

ffiffiffiffi
m

p þ
ð1� aÞ WDþ hQ Q=2þ r�DL

� �� �
� zQ

� �
ðhQþ p0DÞBðrÞtm�1ða2Þs=

ffiffiffiffi
m

p if z24z4z3

0 otherwise;

8>>>>>>><
>>>>>>>:

ð19Þ

where

z1 ¼ W
D

Q
þ h

Q

2
þ r�DL


 �
þ %aa� tm�1ða1Þ

sffiffiffiffi
m

p
" #

hþ p0
D

Q


 �
BðrÞ;

z2 ¼ W
D

Q
þ h

Q

2
þ r�DL


 �
þ %aa hþ p0

D

Q


 �
BðrÞ

and

z3 ¼ W
D

Q
þ h

Q

2
þ r�DL


 �
þ %aaþ tm�1ða2Þ

sffiffiffiffi
m

p
" #

hþ p0
D

Q


 �
BðrÞ:

Therefore, the centroid of mGðQ;r;LÞð *aa * ÞðzÞ can be obtained by a formula, and is given by

VðQ; r; LÞ ¼

R1
�1 zmGðQ;r;LÞð *aa * ÞðzÞ dzR1
�1 mGðQ;r;LÞð *aa * ÞðzÞ dz

¼
1

3
z1 þ z2 þ z3ð Þ

¼ EAC* ðQ; r; LÞ þ
1

3
tm�1ða2Þ � tm�1ða1Þ½ �

sffiffiffiffi
m

p hþ p0
D

Q


 �
BðrÞ; ð20Þ

Fig. 3. Level 1� a triangular fuzzy number *aa* .
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where

EAC* ðQ; r; LÞ ¼ Aþ RðLÞ þ pBðrÞ½ �
D

Q
þ h

Q

2
þ r�DL


 �
þ %aa hþ p0

D

Q


 �
BðrÞ:

Note that the only difference between EAC* ðQ; r; LÞ and EACðQ; r; LÞ (Eq. (2)) is that the lost sales rate a
in (2) is replaced by the sample mean %aa.

We regard the value VðQ; r;LÞ as an estimate of the expected annual total cost in the fuzzy sense.

Remark 3. If a1 ¼ a2 ¼ a=2, then tm�1ða1Þ ¼ tm�1ða2Þ, and hence the triangle in Fig. 3 becomes an isosceles
triangle; this implies VðQ; r; LÞ ¼ EAC* ðQ; r; LÞ. If a1 > a2, then tm�1ða1Þ5tm�1ða2Þ, and hence the
triangle is skewed to the right; it implies VðQ; r; LÞ > EAC* ðQ; r; LÞ. If a15a2, then tm�1ða1Þ > tm�1ða2Þ,
and hence the triangle is skewed to the left; it implies VðQ; r; LÞ5EAC* ðQ; r; LÞ.

Again, we investigate the optimal inventory strategy in the fuzzy sense for the case where the
distributional form of lead time demand X is unknown. Using similar arguments as discussed in
Section 3, we first obtain the least upper bound of expected annual total cost VðQ; r; LÞ in the fuzzy sense
as follows:

VuðQ; k; LÞ ¼ Aþ RðLÞ½ �
D

Q
þ h

Q

2
þ ks

ffiffiffiffi
L

p
 �
þ

1

2
s
ffiffiffiffi
L

p
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
� kÞ

 p
D

Q
þ %aaþ

tm�1ða2Þ � tm�1ða1Þ
3

sffiffiffiffi
m

p
 !

hþ p0
D

Q


 �" #
; L 2 ½Li; Li�1�: ð21Þ

Then, we seek to minimize VuðQ; k; LÞ by optimizing over Q, k and L. As discussed in previous section,
we can show that VuðQ; k; LÞ is concave in L 2 ½Li; Li�1� for fixed (Q, k). Hence, for fixed ðQ; kÞ, the
minimum expected annual total cost in the fuzzy sense will occur at the end points of the interval ½Li; Li�1�.
Moreover, it can be shown that VuðQ; k; LÞ is convex in ðQ; kÞ for fixed L 2 ½Li; Li�1�. Then upon setting
@VuðQ; k; LÞ=@Q ¼ 0 and @VuðQ; k; LÞ=@k ¼ 0, we obtain

Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D

h
Aþ RðLÞ þ

1

2
s
ffiffiffiffi
L

p
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
� kÞ pþ p0 %aaþ

tm�1ða2Þ � tm�1ða1Þ
3

sffiffiffiffi
m

p
 !" #( )vuut ð22Þ

and

kffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p ¼ 1�
2hQ

pDþ ðhQþ p0DÞ %aaþ ½tm�1ða2Þ � tm�1ða1Þ�=3 s=
ffiffiffiffi
m

p� �� �: ð23Þ

Thus, for given a1 > 0, a2 > 0 and a1 þ a2 ¼ a, we can establish the following algorithm to find the
optimal solutions for order quantity, safety factor and lead time.

Algorithm 2.

Step 1. Collect m sample data of lost sales rate, say a1; a2; . . . ; am, and then evaluate sample mean

%aa=ð1=mÞ
Pm

i¼1 ai and sample standard deviation s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1=ðm� 1Þ�

Pm
i¼1 ðai � %aaÞ2

q
. In addition, for given a1

and a2 (a1 þ a2 ¼ a), consult the t-distribution table to find the values of tm�1ða1Þ and tm�1ða2Þ, where
tm�1ðaiÞ is the upper ai point of the t-distribution with m�1 degrees of freedom, i ¼ 1; 2.
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Step 2. For given, Li; i ¼ 0; 1; 2; . . . ; n, perform (i)–(iv).

(i) Start with ki1 ¼ 0.
(ii) Substituting ki1 into (22) evaluates Qi1.
(iii) Utilizing Qi1 determines ki2 from (23).
(iv) Repeat (ii) to (iii) until no change occurs in the values of Qi and ki Denote the solution by ð #QQ*

i ;
#kk*
i Þ.

Step 3. For each ð #QQ*
i ;

#kk *
i ; LiÞ; i ¼ 0; 1; 2; . . . ; n, calculate the corresponding fuzzy expected annual total

cost Vð #QQ*
i ;

#kk *
i ; LiÞ by utilizing (21).

Step 4. Find mini¼0;1;2;...;n V
uð #QQ *

i ;
#kk*
i ; LiÞ. If VuðQ *aa * ; k *aa * ; L *aa * Þ ¼ mini¼0;1;2;...;n V

uð #QQ *
i ;

#kk*
i ; LiÞ, then ðQ *aa * ;

k *aa * ; L *aa * Þ is the optimal solution in the fuzzy sense.

Once again, when k *aa * and L *aa * are obtained, the optimal reorder point r *aa * ¼ DL *aa * þ k *aa * s
ffiffiffiffiffiffiffiffi
L *aa *

p
follows.

Example 2. We use the same data as in Example 1, but the random sample of size 6 yields the sample
mean of lost sales rate %aa ¼ 0:5 and sample standard deviation s ¼ 0:195. We determine the optimal
inventory strategy in the fuzzy sense for the case where a1 ¼ 0:1 and a2 ¼ 0:05. Consulting the t-distribution
table, we find t5ð0:1Þ ¼ 1:476 and t5ð0:05Þ ¼ 2:015. The results of the solution procedure are summarized
in Table 3.

From Table 3, by comparing Vuð #QQ*
i ; #rr

*
i ;LiÞ, i ¼ 0; 1; 2; 3, we find that the optimal strategy

ðQ *aa * ; r *aa * ; L *aa * Þ ¼ ð158; 63; 3Þ, which leads to the minimum expected annual total cost, in the fuzzy sense,
of $3736.86.

5. Concluding remarks

In this paper, we modify the continuous review inventory models involving variable lead time
with a mixture of backorders and lost sales by fuzzifying the lost sales rate. Two fuzzinesses of lost
sales rates are introduced. In Section 2, we discuss how to apply the fuzzy set concepts to deal with
the problem in which no statistical data can be used. Moreover, when statistical data are available,
we discuss how to combine the statistical and fuzzy technologies to deal with such a problem in Section 4.
In each fuzzy case, we investigate a computing schema for the modified inventory model where informa-
tion about the lead time demand distribution is partial. We solve the problem by utilizing the
minimax distribution-free procedure and develop an algorithm procedure to find the optimal
order quantity, reorder point and lead time. Furthermore, two numerical examples are given to illustrate
the results.

Table 3

Solution procedure of Algorithm 2 (Li in weeks)

i Li RðLiÞ #QQ*
i #rr*i (

#kk*
i ) Vuð #QQ*

i ; LiÞ

0 8 0 167 137 (2.2561) $4260.78

1 6 5.6 161 109 (2.3051) 4028.18

2 4 22.4 156 79 (2.3481) 3786.10

3 3 57.4 158 63 (2.3294) 3736.86
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